LITERATURVERZEICHNIS

- [1] M. F. Bartlett & W. I. Taylor, J. Amer. chem. Soc. 82, 5941 (1960).
- [2] E. Schlittler & A. Furlenmeier, Helv. 36, 2017 (1953).
- [3] W. I. Taylor, in: 'The Alkaloids', ed. by R. H. F. Manske, Academic Press, New York and London, a) 8, 253 (1965), b) 11, 128 (1968).
- [4] Referat von O. Clauder, A. Király, L. Szporny & E. Kárpáthy am 2nd Congr. Hung. Pharmacol. Soc., Budapest 1974.
- [5] J. Mokrý & I. Kompiš, Tetrahedron Letters 1963, 1917.
- [6] J. Trojánek, O. Štrouf, J. Holubek & Z. Čekan, Tetrahedron Letters 1961, 702.
- [7] J. Le Men, Chimica therapeutica 6, 137 (1971).
- [8] L. Gesztes & O. Clauder, Acta pharmaceutica Hungarica 38, 71 (1968).
- [9] G. Hugel, B. Gourdier, J. Lévy & J. Le Men, Tetrahedron Letters 1974, 1597.
- [10] J. Mokrý, I. Kompiš, J. Suchy, P. Sefcovic & Z. Voticky, Chem. Zvesti 16, 140 (1962).
- [11] C. Loerincz, E. Kárpáti, L. Szporny, K. Szasz & L. Kisfaludy, Dt. Offenlegungsschrift 2.253.778 (1971).
- [12] P. Pfäffli, W. Oppolzer, R. Wenger & H. Hauth, Helv. 58, 1131 (1975).
- [13] J. Mokrý, M. Shamma & H.E. Soyster, Tetrahedron Letters 1963, 999.
- [14] H.P. Weber & T.J. Petcher, J. chem. Soc. Perkin II 1973, 2001.
- [15] E. Bombardelli, A. Bonati, B. Gabetta, E.M. Martinelli, G. Mustich & B. Danieli, Fitoterapia 46, 51 (1975).
- [16] F. Bohlmann, Chem. Ber. 91, 2157 (1958).
- [17] D.L. Coffen, D.A. Katonak & F. Wong, J. Amer. chem. Soc. 96, 3966 (1974).

164. Über die Temperaturabhängigkeit der ¹³C-NMR.-Spektren von $[5-6-\eta-(1Z,5E)$ -Cyclooctadien]tetracarbonyleisen und (1Z,5E)-Cyclooctadien

von Martin von Büren¹), Pius Bischofberger und Hans-Jürgen Hansen

Institut de chimie organique de l'Université, Pérolles, CH-1705 Fribourg

(7.VI.78)

On the Temperature Dependence of the ¹³C-NMR. Spectra of $[5-6-\eta-(1Z,5E)$ -Cyclooctadiene]tetracarbonyliron and of (1Z,5E)-Cyclooctadiene

Summary

The activation parameters of the conformational ring inversion process (simultaneous rotation around the C(3), C(4) and C(7), C(8) bonds; *cf. Scheme 1*) of the title compounds (1 and 2, respectively) have been determined between 275 K and 155 K by a complete line shape analysis of the temperature dependent proton noise-modulated decoupled ¹³C-NMR. spectra of 1 and 2. The temperature dependence of the rates (k (1) and k (2), respectively) of the inversion process can be described by the following equations (no influence of the solvents was observed; E in [/mol]:

$$k (1) = 10^{13,02\pm0.35} \exp(-(42010\pm1470)/\text{RT})\text{s}^{-1}$$

 $k (2) = 10^{13,05\pm0.17} \exp(-(33930\pm590)/\text{RT})\text{s}^{-1}$

¹⁾ Teil der geplanten Dissertation, Université de Fribourg.

Further data are given in *Tables 1* and 2.

The carbonyl groups of the complex 1 show at 180 K, where the ring inversion process is frozen out, a single line at 211 ppm, *i.e.* the coalescence temperature of the carbonyl groups must be < 180 K.

Im Rahmen unserer Untersuchungen über Tetracarbonyleisenkomplexe von trans-Cycloalkenen und trans-Cycloalkadienen [1] machten wir die Beobachtung, dass im protonenentkoppelten ¹³C-NMR.-Spektrum von $[5-6-\eta-(1Z, 5E)$ -Cyclooctadien]tetracarbonyleisen (1), welches sich leicht aus (1Z, 5E)-Cyclooctadien (2) und Fe₂(CO)₉ in Pentan bereiten lässt (vgl. [1]), bei Temperaturen > 250 K für den Olefinliganden nur 4 ¹³C-Signale auftreten (vgl. Fig. 1b). Diese Erscheinung trat auch beim freien Olefinliganden auf (vgl. Fig. 1a)²). Schon Cope et al. [4] vermuteten, dass bei 2 eine Ringinversion auftreten könnte, wie sie für den Tetracarbonyleisenkomplex 1 in Schema 1 dargestellt ist. Durch den Umklapprozess der cis-konfiguierten Doppelbindung³), bewirkt durch gleichzeitige Rotation um die C(3), C(4)und C(7), C(8)-Bindungen, werden C(1)/C(2), C(3)/C(8), C(4)/C(7) und C(5)/ C(6) ineinander übergeführt⁴), d. h. 1 und 2 sollten bei einem raschen Umklappvor-

- ²) Unabhängig von uns wurde kürzlich auch von anderer Seite die Temperaturabhängigkeit des ¹³C-NMR.-Spektrums von 2 und verwandter Verbindungen untersucht [2], nachdem schon 1974 über Temperatureffekte beim ¹³C-NMR.-Spektrum von (1Z, 5E)-1,2,5,6-Tetracyano-1,5-cyclooctadien berichtet worden war [3a]. Auch der entsprechende Tetracarbonsäuremethylester zeigt im Bereich von 273K ein temperaturabhängiges ¹³C-NMR.-Spektrum [3b].
- ³) (1Z,5E)-Cyclooctadien (2) tritt in Enantiomeren auf, die von Cope et al. [5] über einen optisch aktiven Platinkomplex schon früher aufgetrennt wurden. Die Enantiomeren gehen bei 0-20° nicht ineinander über, d.h. bei diesen Temperaturen tritt kein Umklappen der trans-konfigurierten Doppelbindung durch gleichzeitige Rotation um die C(4), C(5)- und C(6), C(7)-Bindungen ein, was zu einer Racemisierung führen würde.
- ⁴) Die Austauschsituation bei den Protonen ist etwas komplizierter, indem zwar H¹/H² und H⁵/H⁶ ineinander übergeführt werden, bei den übrigen Protonen aber nur H⁴/H⁷, H⁴/H⁷ und H³/H⁸ bzw. H³/H⁸ ineinander übergehen, was für die der *cis*-konfigurierten Doppelbindung benachbarten Protonen gleichbedeutend mit einem «Innen-Aussen»-Platzwechsel ist.

Fig. 1. a) ¹³C-NMR.-Spektrum von (1Z,5E)-Cyclooctadien (2) (CDCl₃/CS₂ 1:1; 252,6 K); b) ¹³C-NMR.-Spektrum von [5-6-η-(1Z,5E)-Cyclooctadien]tetracarbonyleisen (1) (CDCl₃/CS₂ 1:1; 252,8 K); c) Spektrum von 1 bei 203,8 K; d) Spektrum von 1 bei 179,7 K. Bei den Spektren 1b-d ist die Resonanzlinie der CO-Liganden des Eisens bei 211 ppm nicht gezeigt.

gang Pseudo-C₂-Symmetrie besitzen, was im Einklang mit den beobachteten 4 ¹³C-NMR.-Signalen von **1** und **2** bei Temperaturen > 250 K steht (vgl. *Fig. 1a* und *1b*). Es erschien also interessant, eine vollständige Linienformanalyse [6] der temperaturabhängigen Signale in den ¹³C-NMR.-Spektren von **1** und **2** auszuführen.

Durch Vergleich der chemischen Verschiebungen im Komplex 1 und im Liganden 2 lassen sich die Resonanzlinien 1-4 (*Fig. 1*) bei raschem Austausch zuordnen: Die beim Liganden 2 bei tiefstem Feld erscheinende Linie 2 kann den Atomen C(5) und C(6) der *trans*-konfigurierten Doppelbindung zugeschrieben werden, denn sie erleidet bei der Komplexierung eine starke Koordinationsverschiebung ($\Delta ppm = 78,4$; vgl. [1]) nach höherem Feld, während die Linie 1 für C(1) und C(2) der *cis*-konfigurierten Doppelbindung ihre Lage nicht ändert. Andererseits erfährt von den Linien 3 und 4 bei der Komplexierung der *trans*-Doppelbindung (vgl. [1]) vor allem die Linie 4 eine leichte Koordinationsverschiebung ($\Delta ppm = -4,0)^5$), so dass sie den der *trans*-Doppelbindung benachbarten C(4) und C(7) zugeordnet werden kann, d.h. Linie 3 muss den die *cis*-Doppelbindung flankierenden C(3) und C(8) entsprechen.

Beim Abkühlen einer ca. 10proz. Lösung des Komplexes 1 in CDCl₃/CS₂ 1:1 (v/v) beginnen sich die Linien 1, 3 und 4 rasch zu verbreitern (vgl. Fig. 1c), um sich danach je in zwei Linien aufzuspalten. Für die Linie 2 wird diese Erscheinung erst bei etwa 190 K beobachtet. Bei 180 K sind alle Linien 1-4 je in zwei scharfe Linien aufgespalten (vgl. Fig. 1d), wie es für die Formen 1a bzw. 1a' (Schema 1) mit 8 nicht äquivalenten C-Atomen zu erwarten ist. Die gleiche Beobachtung wird auch beim freien Liganden 2 gemacht (vgl. auch [2]). Allerdings wird hier ein ¹³C-NMR.-Spektrum mit 8 scharfen Linien erst bei 155 K erhalten. Die aus den Linienformanalysen berechneten k(1)- bzw. k(2)-Werte sind in Tabelle 1 zusammengestellt. Sie liefern nach Logarithmierung für beide Verbindungen eine Arrhenius-Gerade (vgl. Fig. 2 und 3) mit Korrelationskoeffizienten von 0,9990 bzw. 0,9997. Die ermittelten Aktivierungsparameter für den Ringinversionsprozess im Komplex 1 und freien Liganden 2 sind in Tabelle 2 angegeben. Der für 2 gefundene ΔG_{298}^{+} -Wert stimmt innerhalb der Fehlergrenzen gut mit dem von Whitham et al. [2] aus der Koaleszenztemperatur abgeleiteten Wert von $35 \pm 1 \text{ kJ/mol}$ überein. Auffallend ist, dass die Energiebarriere des Ringinversionsprozesses des Liganden im Tetracarbonyleisenkomplex deutlich höher liegt (~8 kJ/mol) als im freien Liganden, d.h. die Komplexierung der trans-konfigurierten Doppelbindung führt zu einer Versteifung des 1,5-Cyclooctadienringes. Ein ähnlicher Effekt wurde von Whitham et al. [2] auch bei der Überführung der trans-Doppelbindung von 2, z.B. in das entsprechende Epoxid ($\Delta G^{\dagger} = 41.5 \text{ kJ/mol}$) beobachtet.

Dass bei 1 bei 288 K eine rasche Ringinversion des Liganden eintritt, lässt sich auch dem ¹H-NMR.-Spektrum in C₆D₆ entnehmen. In *Figur 4* sind aus einem 360-MHz-Spektrum die Bereiche der olefinischen Protonen des Liganden wiedergegeben. Aus der Symmetrie der Signalgruppen folgt, dass H-C(1) und H-C(2) sowie H-C(5) und H-C(6) gleiche chemische Verschiebungen besitzen, d. h. offenbar einem raschen Austausch unterliegen. Für diesen Fall müssen aber H³, H³, H⁸ und

⁵) Koordinationsverschiebungen in dieser Grösse wurden von uns auch bei anderen *trans*-Cycloalkentetracarbonyleisen-Komplexen beobachtet (vgl. auch [7]).

Tetracarbonyleisenkomplex 1		Freier Ligand 2	
Temp. [K]	$k(1)^{c}$ [s ⁻¹]	Temp. [K]	$k(2)^{\circ})$ [s ⁻¹]
275,6	113500 (3)	222,4	112900 (3,4)
265,2	63600 (3)	213,3	60100 (3,4)
252,8	23200 (3)	200,7	15600 (3,4)
252,4	16200 (3)	193,5	8100 (3,4)
229,0	2460(1)	180,9	1800 (2,3)
217,9	1200 (1)	177,1	1 180 (1,2)
203,8	192 (4)	165,1	212 (1-4)
194,3	50 (1)	160,4	101 (1-4)
187,2	19,4 (2)	155,0	39,4 (1-4)
179 7	6 25 (2)	,	, , ,

Tabelle 1. k-Werte des Ringinversionsprozesses im Tetracarbonyleisenkomplex 1^a) bzw. im freien Liganden 2^b)

^a)In CDCl₃/CS₂ 1:1 (ν/ν). ^b)In CCl₂F₂/CS₂ 2:1 (ν/ν). ^c)Nach den k-Werten sind in Klammern die Linien angegeben, die zur Berechnung herangezogen wurden.

Tabelle 2. Aktivierungsparameter für den Ringinversionsprozess im Komplex 1 und im freien Liganden 2ª)

	Komplex 1 ^b)	Ligand 2 °)
$\overline{E_a(kJ/mol)}$	$42,01 \pm 1,47$	33,93±0,59
logA	$13,02 \pm 0,35$	$13,05 \pm 0,17$
ΔH^{+} (kJ/mol)	$40,17 \pm 1,48$	32.40 ± 0.63
ΔS^{+} (J/grd · mol)	$-1,5\pm6.8$	$+ 0.6 \pm 3.4$
$\Delta G_{298}^{\pm}(\mathbf{kJ/mol})$	$40,63 \pm 3,50$	$32,23 \pm 1,66$

^a) Fehlergrenzen beziehen sich auf ein Signifikanzniveau von 95%.

b) In CDCl₃/CS₂ 1:1 (ν/ν).

^c) In CCl_2F_2/CS_2 2:1 (ν/ν); in $CDCl_3/CS_2$ (höhere Temp.) und $(CD_3)_2CO/CS_2$ 1:2 (ν/ν) (tiefere Temp.) wurden die gleichen Aktivierungsparameter erhalten.

 $H^{8'}$ (vgl. Schema 1 und Fussnote 4) gleichgrosse gemittelte ³J- und ⁴J-Kopplungskonstanten mit H¹ und H² besitzen. Unter dieser Annahme lässt sich mit ³J=6,0 (und 8,1) Hz bzw. ⁴J = -0,6 Hz eine nahezu perfekte Simulierung der Signalgruppe für H¹ und H² erreichen⁶). In gleicher Weise lässt sich die Signalgruppe von H⁵, H⁶ der komplexierten *trans*-konfigurierten Doppelbindung simulieren, wobei in diesem Falle aber auch im gemittelten Spektrum zwei vicinale ³J- und allylische ⁴J-Kopplungen auftreten⁷). Die Temperaturabhängigkeit des ¹H-NMR.-Spektrums von **1** und **2** wird noch näher untersucht.

Wir danken Herrn F. Nydegger, Institut für organische Chemie der Universität Fribourg, für die Ausführung der Elementaranalysen und Herrn Dipl.-Chem. W. Schwotzer, Organisch-chemisches Institut der Universität Zürich, für die Aufnahme des 360MHz-¹H-NMR.-Spektrums des Komplexes 1. Diese Arbeit wurde wiederum in dankenswerter Weise vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

⁶) ${}^{3}J(\mathrm{H}^{3},\mathrm{H}^{2}) = {}^{3}J(\mathrm{H}^{3},\mathrm{H}^{2}) = {}^{3}J(\mathrm{H}^{8},\mathrm{H}^{1}) = {}^{3}J(\mathrm{H}^{8},\mathrm{H}^{1}) = {}^{6},0$ Hz, ${}^{3}J(\mathrm{H}^{1},\mathrm{H}^{2}) = {}^{8},1$ Hz, ${}^{4}J(\mathrm{H}^{3},\mathrm{H}^{1}) = {}^{4}J(\mathrm{H}^{3},\mathrm{H}^{2}) = {}^{4}J(\mathrm{H}^{8},\mathrm{H}^{2}) = {}^{-0},6$ Hz ($J_{\mathrm{gen}} = J(\mathrm{H}^{3},\mathrm{H}^{3}) = J(\mathrm{H}^{8},\mathrm{H}^{8})$ gleich -13,5 Hz gesetzt).

⁷) ${}^{3}J(\mathrm{H}^{4'},\mathrm{H}^{5}) = {}^{3}J(\mathrm{H}^{7},\mathrm{H}^{6}) = 7,0 \text{ Hz}, {}^{3}J(\mathrm{H}^{4},\mathrm{H}^{5}), {}^{3}J(\mathrm{H}^{7'},\mathrm{H}^{6}) = 3,3 \text{ Hz}, {}^{3}J(\mathrm{H}^{5},\mathrm{H}^{6}) = 10,0 \text{ Hz}, {}^{4}J(\mathrm{H}^{4'},\mathrm{H}^{6}) = {}^{4}J(\mathrm{H}^{7'},\mathrm{H}^{5}) = -2,0 \text{ Hz}.$

Fig. 2. Arrhenius-Diagramm der Ringinversion des Liganden im Komplex 1 ($\ln \tau = \ln(1/k(1))$)

Fig. 3. Arrhenius-Diagramm der Ringinversion des freien Liganden 2 ($\ln \tau = \ln(1/k(2))$)

Fig. 4. Bereiche der olefinischen Protonen im Fourier-transformierten 360MHz-¹H-NMR.-Spektrum (C₆D₆, 288 K) vom Komplex **1**

Experimenteller Teil

Allgemeine Bemerkungen. Vgl. [8]. Die ¹³C-NMR.-Spektren wurden auf einem Varian-XL-100-12-Gerät, ausgerüstet mit einer Puls-Fourier-Transformeinheit und einem 620L-16K-Computer, in 10 mm Probenröhrchen (ca. 10-15proz. Lösungen) bei 25,2 MHz gemessen. Die Spektren wurden für die kinetischen Messungen protonenentkoppelt und mit einer spektralen Breite von 4000 Hz bei einer Messdauer von 1 s, entsprechend 1 Datenpunkt/Hz im Fourier-transformierten Spektrum, aufgenommen. Die Anzahl der Messdurchgänge lag zwischen 400 und 1000. – Die Temperatur wurde mit einem Digitalthermometer (Air Products & Chemicals Inc.; APD-T1, Typ CGI) gemessen. Das Thermoelement (Gold/Chromel) wurde während der Aufnahme der Spektren im rotierenden Probenröhrchen unter einem leichten N₂-Überdruck belassen, so dass die Temperatur leicht überwacht werden konnte. Die Temperaturschwankungen während der Messungen betrugen maximal $\pm 0,2^{\circ}$. Für die Simulierung der ¹H-NMR.-Spektren wurde das SIMEQ-II-Programm [9] auf dem 620L-Computer benutzt.

1. $[5-6-\eta-(1Z, 5E)-Cyclooctadien]tetracarbonyleisen (1) (vgl. [1]). 250 mg (2,31 mmol) 2 wurden in 200 ml Pentan (um die Dimerisierung von 2 zu vermeiden; vgl. [10]) unter N₂ 16 Std. bei RT. mit 910 mg (2,50 mmol) Fe₂(CO)₉ gerührt. Es wurde filtriert, die Pentanlösung bei$ *ca.*5° eingedampft und der Komplex 1 durch präp. Dünnschichtchromatographie an Kieselgel (*Woelm*, GF-DC) mit Pentan als Laufmittel gereinigt und bei 0° i.HV. von Lösungsmittelresten befreit; Ausbeute 475 mg (74,5%). – UV. (Hexan): 208 (4,51), 267 (S, 3,76). – IR. (CHCl₃): 3005, 2935, 2860, 2082–1980 (CO), 1453, 1438, 634; (Hexan): vgl. [1]. – ¹H-NMR. (CDCl₃, 273 K/C₆D₆, 283 K): 5,75/5,57 (*m*, 2 H; H-C(1) und H-C(2)); 3,03/2,72 (*m*, 2 H; H-C(5) und H-C(6)); 2,35/2,02 (*m*, 6 H; 2H-C(3), 2H-C(8), H-C(4) und H-C(7)); 1,27/1,03 (*m*, 2 H; H-C(4) und H-C(7)). – ¹H-NMR. (360 MHz; C₆D₆, 288 K): 5,55 (*m*, 2 H; H-C(1) und H-C(2)); 2,74 (*m*, 2 H; H-C(5) und H-C(6)); 2,12 (*m*, 2 H; H-C(4) und H-C(7)); 1,99 (*m*, 4 H; 2 H-C(3) und 2 H-C(8)); 1,00 (*m*, 2 H; H-C(4) und H-C(7)). – ¹³C-NMR. (CDCl₃, 257 K/C₆D₆, 292 K): 2111,1/211,6 (CO); 129,5/129,7 (¹J=154, C(1,2)); 57,6/58,3 (¹J=150, C(5) und C(6)); 32,9/33,2

 $({}^{1}J=133, C(3) \text{ und } C(8)); 31,3/31,5 ({}^{1}J=129, C(4) \text{ und } C(7)). - {}^{13}C-NMR. (CDCl_3/CS_2 1:1, 179,7 K): 211,0 (CO); 130,3/128,8 (C(1) und C(2)); 57,4/57,1 (C(5) und C(6)); 36,7/29,3 (C(3) und C(8)); 32,2/30,7 (C(4) und C(7)). - MS. (70 eV): 276 (<math>M^{+}$, 10), 248 (22), 220 (37), 192 (44), 165 (12), 164 (100), 110 (73), 108 (8), 79 (13), 46 (29).

C₁₂H₁₂FeO₄ (276,07) Ber. C 52,21 H 4,38% Gef. C 52,47 H 4,54%

2. (1Z, 5E)-Cyclooctadien (2) (vgl. [4] [11] [12]). Das Olefin wurde in 9,5% Ausbeute gemäss [12] aus (1Z, 5Z)-Cyclooctadien bereitet. Es enthielt noch 1,5% des (Z, Z)-Isomeren. – IR. (Film; vgl. [4]): 3003, 2950 (S), 2925, 2855, 1628, 1449, 990, 985 (S), 833, 791, 718. – ¹H-NMR. (CDCl₃, 307 K): 5,77 (m, 2 H; H–C(1) und H–C(2)); 5,61 (m, 2 H; H–C(5) und H–C(6)); 2,5–1,8 (m, 8 H). – ¹³C-NMR. (CDCl₃, 263 K/C₆D₆, 303 K): 136,0/136,1 (¹J~160, C(5) und C(6)); 129,5/129,8 (¹J~160, C(1) und C(2)); 32,8/33,2 (¹J~130, C(3) und C(8)); 27,3/27,6 (¹J~130, C(4) und C(7)). – ¹³C-NMR. (CCl₂F₂/CS₂ 1:2, 155,6 K): 137,4/134,5 (C(5) und C(6)); 129,6/129,1 (C(1) und C(2)); 35,4/28,8 (C(3) und C(8)); 31,9/21,4 (C(4) und C(7)). – MS. (70 eV; vgl. [11]): 108 (M^+ , 7), 93 (14), 91 (7), 80 (33), 79 (34), 78 (7), 77 (9), 67 (45), 66 (15), 55 (6), 54 (100), 53 (8), 41 (9), 39 (20).

C₈H₁₂ (108,18) Ber. C 88,82 H 11,18% Gef. C 88,56 H 11,40%

LITERATURVERZEICHNIS

- [1] M. von Büren & H.-J. Hansen, Helv. 60, 2717 (1977).
- [2] St. G. Davies, P.F. Newton & G.H. Whitham, J. chem. Soc. Perkin II 1977, 1371.
- [3] a) D. Belluš, H.-Ch. Mez, G. Rihs & H. Sauter, J. Amer. chem. Soc. 96, 5007 (1974); b) H.-D. Martin, H. Hekman, G. Rist, H. Sauter & D. Belluš, Angew. Chem. 89, 420 (1977).
- [4] A.C. Cope, Ch.F. Howell, J. Bowers, R.C. Lord & G.M. Whitesides, J. Amer. chem. Soc. 89, 4024 (1967).
- [5] A.C. Cope, J.K. Hecht, H.W. Johnson, jr., H. Keller & H.J.S. Winkler, J. Amer. chem. Soc. 88, 761 (1966).
- [6] H.S. Gutowski & C.H. Holm, J. chem. Physics 25, 1228 (1956); G. Binsch, Topics Stereochemistry 3, 97 (1968).
- [7] L. Kruczynski, L. K. K. LiShingMan & J. Takats, J. Amer. chem. Soc. 96, 4006 (1974).
- [8] U. Steiner & H.-J. Hansen, Helv. 60, 191 (1977); U. Steiner, H.-J. Hansen, K. Bachmann & W. v. Philipsborn, Helv. 60, 643 (1977).
- [9] C. W. F. Kort, Universität Amsterdam, & M.J.A. de Bie, Universität Utrecht 1974.
- [10] J. Leitich, Angew. Chem. 81, 929 (1969).
- [11] G.M. Whitesides, G.L. Goe & A.C. Cope, J. Amer. chem. Soc. 91, 2608 (1969).
- [12] J.A. Deyrup & M. Betkouski, J. org. Chemistry 37, 3561 (1972).